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Practical and theoretical considerations in computing first passage time

statistics are considered. We are motivated by first passage times as models of
failure times.

In particular, let X(t) be a diffusion on [O,r] with a reflecting boundary at 0.

Denote by rT the time of first passage to level r, ie, r, = inf {t > 0, X(t) > r},

and let w(x,t) be its tail probability function conditional on X(0) = 0 , ie
(x,t) P{ r7 >t IX(0)-=x} Px{rr >t}.

In Section 1, the relevance of first passage time distributions as failure time

models is indicated ef- [8])' Also, the spectral series expansion solution to the
backward equation is introduced.

In Section 2, algorithms for approximating w(x,t) are obtained. In

particular, the infinite spectral expansion for w(x,t) is approximated by an n-
term sub-expansion which matches the first n-1 moments. Proofs validating
the spectral expansion and the related approximation scheme are given in the
Appendix.

In Sections 3 and 4, methods are given for obtaining the eigenvalues and
first passage moments, necessary for computing approximations to w(xt) . In

Section 5. computational issues related to calculating the moment generating
function are considered.

Sections 6 and 7 include theoretical complements about first passage times.
In particular, the moment generating function is shown to possess an interesting

representation having exponential form (cf equation (7.1) ). This exponential
representation is related to asymptotic expansions used in -nalyzing
perturbations of certain second-order differential equations.
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1. Introduction And Motivation

Let {f1 , F , P} be a probability space. Suppose that Ft is a filtration of F
and that {W(t), t > 0} is standard Brownian motion adapted to Ft .

Let

A - 02(x)D 2 + (x)D (1.1)
2

be the infinitesimal generator of a diffusion X(t) on [0, r] satisfying

dX(t) = a(x)dW(t) + g(x)dt

with a reflecting boundary at 0 and absorption at r < oo, and where C2 (x) > 0
and A(x) are continuously differentiable on [0, r]

Define the stopping time r, by

r= inf {s: s>0 ,X(s)> :r}

and the moment generating function '#(x,y) by

o(x,y) = E{eY I X(O)=-x} - E'[e r' ]

1.1 First Passage Times As Failure Times

Our motivation for studying first passage time distributions is their
relevance to modeling of failure times. Indeed, this paper continues the line of
development initiated in [8], where a stochastic process is used to model system
state, ie, wear-and-tear, and failure occurs when either a traumatic killing event
occurs (killing events happen with rate k(x) in state x), or the system is retired 4
when wear-and-tear reaches some predefined threshold (ie. a first passage
occurs).

For example, if system state is modeled as Brownian motion with positive
drift, then first passage to a specified threshhold has an inverse Gaussian *j
distribution. This first passage distribution has been successfully applied to o
numerous problems to obtain good fits, (cf Jorgensen [41 ). I F]

A related but parallel line of development is explored in Wenocur [11] ........... ....
where the killing time distribution of Brownian motion with quadratic killing
rate is calculated.............................

Our aim in this paper is to study first passage time distributions, where the Codes
system state process is a general diffusion with reflection at the origin and
absorption at r < 00. That is, the system state evolves as a diffusion, and a., d j or



failure occurs at the epoch of first passage (or absorption) to level r

In future work, we intend to explore the practical ramifications of employing
the computational methods suggested here to evaluate interesting first passage
times statistics.

1.2 Backward Equation For First Passage Time Distribution

Let w(x,t) denote the tail of the first passage time distribution, ie,

w(x,t) - P{, > t}

The backward differential equation for w(x,t) is

aw(xt) -(aw(x,t) + a2(X) 2w(x't)Aa = ax _2 Aw(x,t) (1.2)
at a 2 ax2

for (x,t) E (0,r) X (0,oo) , with boundary conditions

w(x,O) -1 for0<x <r , and for all t >0 w(r,t) =0 and aw(Ot) 0.
ax

For a derivation of this equation and other related quantities see [5], pp 222-

224.

1.3 The Spectral Representation for w(x,t)

The following representation for w(x,t) is valid whenever go(x) and tt(x) are
sufficiently smooth.

00

w(x,t)-- ck e-'tk(x) (1.3)

where ak and Ok are eigenvalues and eigenfunctions, and ck are generalized
Fourier coefficients, all defined below (This representation is proved in Section
8.1).

The { (bk , k > 1} are eigenfunctions of A corresponding to the elgenvalues
{C(k , k > 1}, ie,

A Ok = - C k ,

and

r

Ck f k(X)p(X)dX
0

-2-

W % J'1 111, 11



where p(x) is given by

p(x) - 27r(x)/o2(x) (1.4)

and lr(x) is given by

z

r(x) - expf 2p(u)/o2 (u)du . (1.5)
0

In general an arbitrary function f E L 2(p) will have a Fourier type
expansion, ie,

00

I = E Ck
k-1

where equality is interpreted in the L 2(p) sense and

r
ck ff (x)ok(x)p(x)dx

0

Remark: In the sequel it is assumed that A's elgenvalues form a complete set in
L 2(p). The completeness of A's eigenfunctions can be assured by certain
regularity conditions on the infinitesimal parameters oa2 (x) and g(x) . For
example, a2(x) > 0 and the continuity of 02"(x) and p'(x) are sufficient
conditions. See [10, chap 11 for more details.

1.4 A Generalization

This paper is primarily concerned with computing first passage time
statistics. In [8], as alluded to in (1.1), a general reliability model was proposed
in which system failures occur when either system wear-and-tear reaches some
maximum permissible level (ie, a first passage occurs) , or when some killing
event happens (such killing events occur with rate k(x) in state x). Under this
model w(x.t) satisfies the following equation:

______ aw(x~t ) 02 x =Bwwxxt)
ow(x.t) = k(x)w(x,t)p(x) x + 2 2(Xt)

1Ot X 2 ax 2

with the same boundary conditions as (1.2) , and where

Bf (x) - 1To2(x)f "(x) + i(x)f'(x) + k(x)f(x).

It is possible to solve for w(x,t) and related quantities with methods very
similar to those presented here.

-3-
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2. Approximating The First Passage Time Distribution

The above discussion might suggest that solving for w(x,t) is pretty
straightforward. But generally eigenvalues and especially eigenfunctions are
difficult to obtain. However the problem of approximating w(x,t) can be
approached by the method of moments. One technique is to calculate the first
three moments, and then use the Pearson curve fitting method (cf [9]). This
method is computationally feasible, and the Pearson family of curves includes
some important first passage distributions, such as the gamma distribution (cf
[1]). The merits of this approach will be studied in a forthcoming paper.

2.1 Given n Eigenvalues And n-I First Passage Moments

A more computationally intensive approach, but one founded on stronger
theoretical grounds, is the following. Suppose that n moments
{Mk(x,r) , 1 < k < n } are known, where Mk(x,r) - EZ[ rr], as well as the
first n eigenvalues {ak, 1 <k <n I . Then use a finite sum in place of the
infinite sum in equation (1.3). In particular, approximate w(x,t) by

W.(X,t ) = ,( I?'x) e
j-1

where p({) = (p) , p ( ' ) satisfies for 0 < k < n-1

k _M (x,r)

pj()() - where k! /as (2. 1

Ideally we want wn(x,t) to be a distribution function, ie, wn(xt) > 0 and
wn(xs+t) >_ wn(x,t) whenever s > 0. It is not clear that solving (2.1) always
produces such a function. This issue requires further investigation.

2.1.1 Obtaining The Weighting Factors

The weighting factors {p( , 1 < k < n } in (2.1) above are obtained by
solving the following linear system:

1 1 1 1
Pi1 P2 . .. AN Pi m I

2 2 .. 2~z () m ,

• = .(2.2)

n-1 n-1 .. n 1P

where p i - 1/aj and mk == Mk(x,r)/k!

-5-.



Observe that the matrix {14 , 1 < j < n, 0 < j < } is none other than the
transpose of the celebrated Vandermonde matrix. Cramer's equation gives the
following formula for pP.

Pk) E mjg,-j(-U,P 2 , .Uk-t, "' / 711 (/.L - Ak) (2.3)1 < j<n I <.j< n

where g, are the signed symmetric functions defined as follows:

go(aa2 ,a) = 1

and for r >1

gr(apa, ,a,) = a,ai2 a,(--)r

15 il<i2 < .''' < i, : rn

It is shown in Section (8.2) that p *) - Pk = O(n- 2)

2.2 Given 2n-1 Moments Only

Suppose that the first 2n-1 moments have been determined. It is possible to
approximately determine the first n eigenvalues by solving the following system
of equations for /i , 1 < i < n.

A1 A2 ... A n P I' M

2n-1 2n1 '. n-1 1

/2 /to" -r 1m,._

Alf P2 ~ An Mon-

where pj > 0 .

One approach is to solve for p(") in terms of {ik 1 < k K n} and
_{M0 , M. m'' ,an-1 } as detailed above, and then use the remaining n

constraints to determine the {k , 1 < k < n}. This reduced system can then be
solved using mathematical programming techniques, eg, approximate Newton-
Raphson techniques. The numerical stability and feasibility of this method
merit further study.

-6-



3. Solving For The Eigenvalues

3.1 The Eigenvalue Equation

Before the eigenvalue equation can be introduced, the eigenfunction
differential equation must be rewritten in more suitable form. To do so, let
YO(x) satisfy

1 o2(x)Y,"(x) + /(X )Y'(x) + 0Y,() - 0 (3.1)

Multiplying (3.1) by p(x) gives

7(x)Yt'(x) + 7r(x)YO'(x) + Op(x)Yo(x) , (3.2)

where p(x) and lr(x) are given by (1.4) and (1.5) respectively.

Now suppose that YO satisfies the boundary conditions

Y#'(0) = 0 and YO(O) = 1

Then define c#() by

c-(O) - Ye(r) (3.3)

The eigenvalues of equation (3.1) are none other than the zeroes of W , see [2,
Chap 8] for further details.

3.2 Standardized Eigenvalue Problem

It is also possible to transform (3.1) into more standard form using the
following transformation scheme.

Sdu

setting z = Z(x) = fx u reduces (3.1) to

f (o()21/2

d 2 Y ) dY
-+ 

3 (2 d + OY =0 (3.4)

where i3(z) = {p(z)-- 21(z)}l( "(z)12
4

if S-- (u)du
Putting Y(z) = g(z)y(z) , where g(z) = co gives

d + (0 - q(z))y =0 (3.5)
dz 2

-7-



where q(z) = 1/32(z) + !)Y(z), and with boundary conditions y'(O) = 0 and

y(b)-- 0 with b = Z(r).

The elgenvalues of (3.5) are the same eigenvalues as those of (3.4) and (3.2)
Moreover the eigenfunctions of (3.5) are easily transformed into those of (3.2)
In particular if -0,(x) is the eigenvalue corresponding to an for (3.5) , then
0.(X) = g(z7())P.(z(-)).

The following powerful asymptotic results (as n --.* oo ) are known about the

eigenvalues and eigenfunctions of the standardized problem (ef [10, p. 19]).

an = n2 ir/b 2 + 0(1) (3.6)
1

ibn (x) - (2/b )/ 2cos(, Xlb) + 0(-) (3.7)
n

=(x) -n(2/b 3)/ 2 sin(nirx/b) + 0(1) (3.8)

-8
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4. Obtaining First Passage Moments

To solve (2.1) we need to produce the moment-sequence
(Mk(x,r) , 1 < k < n}, three such methods are outlined below.

4.1 Complex Integration To Invert Moment Generating Function

Corollary 6.4 shows that ''(x,r) is an analytic function of 0 around 0. and
so Cauchy's formula implies the identity

iVIn(x,r) 1 %(x,r) do (4.1)

n ! -- 2 ir i 1l e o 00 + 1 d

where 00 is sufficiently small.

The integrals in (4.1) may be computed numerically using Gaussian quadrature
to minimize the number of values of 0 to be evaluated, and then taking the real
part. This reduces evaluating the equation to calculating a small number of
values of '(x,r) . Evaluating kka(x,r) may be done by either using finite
differences to solve the boundary value problem (cf equation (7.6)), or by using
the series method suggested in the differentiation approach, or some hybrid of
series and finite differences. An important virtue of estimates of MN,(x,r) based
on formula (4.1) is that the accuracy of these estimates is independent of the
accuracy of the n-1 smaller moments. unlike the methods given in sections
(4.2) and (4.3) below.

4.2 Recursive Integration

This approach iteratively uses (6.1) to compute successive moments. This is
feasible when the successive moments form a closed family of integrals (compare
example 1), or when only a few moments are desired.

Example 1

Choosing parameters a-(x) = 2(x + ao) and p(x) = v where v, 0 0

gives rise to the iteration:
r W0

M,(x) = f + f i-o 1(u)(u + oo)'dudu
X(-W + 0 -0 ) 0

An easy induction will show that for v not integer A/n.l(x) satisfies the
expansion

= nnO +

Wn-+ k(x) c n,O1 E c[n,k](x+a) + d[n,kj(x+a)k-

k-1 k-I

i " ... "-,q - ', : . .*,-.'. ,-..'- -.. - '



where the coefficients are calculated using the iteration:

c[n,k] -nc[n-,k-1]/(k(k-l)+lk) where k > 1

d[n,k] -nd[n-l,k-l((-+k)(-+k-)+-+k)) where k > 2

Finally c [n,01 and d [n,1] are determined by solving the two-dimensional linear

system arising from the boundary conditions Mn(r) = 0 and M'(0) = 0

For integer v , closed formulas for all moments are obtainable, but the

calculations will be messier.

4.3 Differentiating the Moment Generating Function

Successive moments may be obtained by calculating the 0-derivatives of the

moment generating function 4'(x,r) at 9 = 0. This approach is facilitated by

Kent's observation in [7] that 'I'(x,r) = TO(x)/TO(r) where Tq(x) satisfies

1o2(x)Tq'(x) + p(x)T/(x) + OTO(x) = 0 (4.2)

with initial conditions

Te'(0) = 0 , TO(0) # 0 (4.3)

To solve for the 0-derivatives of 'o(x.r) it suffices to solve for the derivatives

of TO(x). We can obtain T 0(x) using the series expansion method around x=O to

solve (4.2) . Under certain regularity conditions, the Taylor series coefficients
may be differentiated with respect to 0 , and the series summed. This process is

illustrated in Example 2 below.

Example 2

We indicate how the technique in (4.3) may be applied to Example 1:

Tg(.r) = E bj AX,
j-0

Equation (4.2) implies that

cAZ [I+2bj+2(0)xJ + i(x) O (+1)b 1 +1 (0)xJ + 0 bjO)x1 j 0
j-0 - j-0 j-0

Since p(x) = v and ofx) = 2(x+o'o) we deduce that

Obj(9) + (v+j(j+))bj+(0) + oo(j+2)(j+)b+,(O) = 0 for j > 1 (4.4)

-10-



where the boundary conditions are

b0(0)-=-1 and bl(0)=0

Repeatedly differentiating (4.4) will give successive iterative formulas for
computing T;")(x) . For example for n=1

Ob(O) + bj(O) + (v + j(j+l))bj+1 '(0) + c0o(j+2)(j+l)bj+o'(0)

With initial conditions bo'(9) = bl'(=) = 0.

If the above iteration diverges, we can always try renormalizing by x and
calculating bj)(O)xn. If r is sufficiently small then renormalization will suffice,
otherwise Tp(x) can be calculated by successively moving out from 0 towards r
as suggested in section (5.1) below, and then using the contour integration
method suggested in section (4.1).

-11-



5. Some Remarks About Computing To'(x,r)

5.1 Computing 'I'g(O,r)

The series expansion method may not permit solving for *6I(,r) in a single
step. However, suppose the series converges for some Y E (O,r) , le, it is possible
to compute *I'(,y) by the series method. We may use 'I'(O,'y) as a bootstrap
to calculate 'I'(y,r) as follows. Observe that TO'(O,r) = 'I'(O,y)'I'(y,r) . Thus

_ ''g(,Y) 8'I'g(y'r)
'I'gy~r = 49%'(0,Y) 9

Using this initial condition and Kent's normalization technique, -it is possible to
calculate 'I'(y,r) starting from y rather than from 0.

5.2 Interpolating 'I'g(x,r) And A Related Boundary Value Problem

Suppose that 'I'(x,r) and 'I'(y,r) have been obtained (x < y) , and it is
desired to calculate 'I'(z,r) for z E (x,Y) . The multiplicative character of
*O'(x,r) implies that

%(~)= 'I'(z,y)'I'g(y,r)

It thus suffices to determine 'I'(z,y) . NWe have 'I'(x.y) = 'I 0(xr)/P8(y.r) and
%(~)= I . Therefore it suffices to find h8(z) *8I'(-z,y)) such that

1 c'(z)he"(z) + p(z)h#/(z) + Ohe(z) = 0(.1

with boundary conditions he(x) = 'I'(x,r)/I'e(y,r) and he(y) =1.These

boundary conditions uniquely determine hp . To solve for he . first find 0 and
satisfying (5.1) . where j'(x) = 1-i and x)= i , for i=0. 1 .Then set

he(:) = %(x,y) I(z) + (Z)(l - \I%(x,ygjc(y))/ o(y)

-12-



6. Theoretical Complements

In this section some of the properties of moments of 7, are examined, but
first some new notation is introduced.

Define Mf,(x,y) =E'(T' for x < y and n > 0 ,and let

M.f"X1Y) (X2Mg( y

8.1 Recursive Equations For Moments Of -r,

The functions i1 4(x,y) jointly satisfy the iterative differential equation (cf
[5], p. 203, equation (3.38))

±o2(x)M.IP(x,y) + u(x)M.'(x,y) + nM., 1(x,y) =0(61
2

subject to M,,'(O,y) = 0 and M,,(y,y) = 0

6.2 Lipschitz Conditions For Moments Of 'r,

Lemma
M~(~y)is a smooth function in x and y jointly ,and there exists a constant

C such that

j(X.y)1 Cny 2 -,(Y-X),n!(.2

and

for all x <_ y

Proof:

Set

s (x) - exp{--~~ d~

-13-



and

() = 1/[(x)s(x)].

Rewriting (6.1) as follows

d '(,2nIV.(xy)m(x)
dx .8(X)

implies that

M.(,y) - 2nf [fMC-.(,y)m( )d~]s()di7
z0

By virtue of continuity there exists a constant K such that

Ilsll - < gs(21 K
0 <z<r

and

IIm II < .

Therefore

z 0

- 2n K2 IIMj[y(y-x) < 2K2 y 2 n IIM._I 1 1

An easy induction implies that Mn(x,y) is a smooth function in x and y
moreover

II.(x,,y)ll < 2"K '" , "-l(y-x)n! (6.3)

and

IIMn'(.,J)II < 2n K 'nY2(n - ')n!

Taking C - (2K 2) completes the proof.

(8.4) Corollary

*I'(x,y) < o whenever 101 < C-y - 2 , and

*#(xy)- 0 on Mn(x,y) (6.4)
S-0



6.3 Infinitesimal Relations Governing First Passage Moments

Proposition

Define

U.(xY) = M. (X ,)aii
and

Then M.(x,y) , U(y), u,,(x) satisfy

Mn(O,Y) - E2 IjJ(OXr)Mn...i(X,Y) (6.5)

Proof
Conditional on X(O) =0 the strong Mfarkov property (SMP) implies that

( 7. , 'ra2 - ra, , r,, - )a, where 0 < a, < a2- < < a,, < r, form a set of
independent random variables. In particular

Mn(O,y) =-E 0 [r' = Eo[(r, + ry - ,n

= n2 njJEo[ r,)' (iy-rxT )-j

= n- nWEO[ rxzv I ExI1T~~n

which coincides with (8.5) . Using a litcle algebraic manipulation on (6.5) shows

that

[M~f(O,Y)-MVn(,X)]/(Y-X) E j j OXM-(XYIYX (6.7)

Now letting y--o- in (6.7) yields (6.6) . QED



Comments
Equations (6.5) and (6.6) provide soir nice intuition about the way that first
passage times from x to y depend on fi. passage times from 0 to x.

Equations (6.5) and (6.6) are similar to (6.1) , but may capture better the
dependence of higher moments on lower moments. From a practical point of
view equation (6.1) is certainly preferable for moment calculation. In section 4,
other methods are proposed for calculating the moments M,(x,y)

-16-



7. A Representation Result

Theorem

0, Y on

4(XY) - exp{ Ef u,,(z) -dz} (7.1)
n-I z n

where {un(z), n> 1} satisfy

1 o2(x)UI'(X) + A(X)u 1 x)= 1 , (7.2)

and for n > 2

1~~~~~~~ a' -)nX +tXUnX _,Xn-i Uk(X)Un...k(X)(73

2 ) + 2( )k(z)- 2 k(1 k!(n-k)!

Proof

We begin by showing that (7.1) holds for 'Y#(0,r) .

Let xj - jr/L for 0 < j L. Using the SMP as in the proof of (6.5),

L-I
I'(0,r) - H 'I'(xjxx+1 )

j-0

Taking logarithms.

L -1

logqI'(0,r) = logo(xj,xj+1 )
j-0

Applying proposi,.ion (8.4) to the above yields

L-1

log'(0,r) = ['o(xj,xj+l) - 1+ ('Io(xj,Xj+l)-1)2g(I'(xj,xj+l))]
j-0

Since %'o(x,x) = 1 it follows

o(xy.xy+,) - 1 = --g-(x.,xj + aL-') L - 1

where 0 < a < 1 . Also since 'I'(x,y) is a smooth function in x and y jointly

it follows that C*(XY) is uniformly bounded on the region 0 < x < y < r. So

there exists a function h(L) such that h(L)-O(1)

L-I
log*O(O,r) E 2 [%PO(xj,xj+)-l] + h(L)L- 1

j-O

I~ ~ ~ ~ ~ f% d I "M ' rq . .. !Il



Replacing each TI'(.L1,x141) in the above by the expression in (6.4), yields

log'I'g(O,r) - L-, E nIf(x,1  + O(L'1)
j-O n-

Since the summands are positive the order of summation may be permuted to
get

log4 'g(O,r)- =, L- r, ( 1, 1  + O(L-1)
n-Iij-O n

The inner summation can be expressed as a Riemann sum

log'I'g(O,r) E L-n M -(x,,, -E) + O(L-1) (7.4)
n-I j-O n! L'

Equation (6.2) implies that

n! L' ()~ C'

where Co - Cr.

The Lebesgue dominated convergence theorem (applied to the product space
{ 1,2,..l X [O,r] endowed with product of the counting measure with the
Lebesgue measure on [O,rj) implies the right side of (7.4) approaches the limit

log'4'g(O,r) = f un(z)dz

as L - oo, or

00 
n 

r

ql(~)= exp{ 57 -- f u7.(Z) dz}

Due to the multiplicative nature of 'I'e(x,y) it is easy to show that

ex{Ef un(z) -dz} 7..

The function 'I'9(x,y) satisfies the following differential equation (cf [5) pp 203)

2 x2 + t(x) ax + OIPO(X,Y) = 0 (7.6)



subject to O -0 and 4 '(y,y)-1.

Substituting equation (7.5) in (7.6) , shows that the exponent in (7.5) satisfies
the differential equation

-U ,,(X)) _ E -- ,()] - . -U,,,(x)] + 0 = 0.
2 n-I n n-I n n-I n

Since the above series converge absolutely for 0 sufficiently small, we can
rearrange terms to obtain a single power series in 9 . Since this power series is
zero for 0 sufficiently small, all its coefficients must be zero. Setting the
coefficients of 0 to zero yields equations (7.2) and (7.3)

The initial condition that 0 in (7.6) implies

u,(O)= O , where n >1.
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8. Appendix

8.1 Spectral Representations For First Passage Time Distributions

Theorem The right-hand-side of (1.3) is the unique function satisfying (1.2),
jointly continuous in x and t on [O,r] X (O,oo) with aw' ~t absolutely

'at
integrable over IO,r] X (N- 1, N) for all N > 1.

Proof:
Suppose that w(x,t) satisfies equation (1.2) and the integrability conditions.
Observe that for fixed t > 0 w(x,t) is a continuous function of x belonging to
L2(p) . Therefore w(x,t) possesses the orthogonal expansion

W(X,t) = Ck(t) 4k(x)
k-i

where

r

Ck (t) _ f W(X,t) O~k(x)p(x)dx
0

Multiply (1.2) by q5k(x) and integrate over [0,Yi to get

r aWX~t)r

f k(x)p(x)dx =f Aw(x,t)Mkx)p(x)dx

Now since AJ (x)p(x) = 7r(x)f 1(x) + 7i (x)f I(x) (cf (3.1) and (3.2)), a simple
integration by parts shows

r r

f A-W(x1t*dk(x)p(x)dx f w(x,t)A Ok(x)p(x)dx
0 0

The relationship .4 Ok W = -CekMkX) implies that

f at) 6k(x)p(x)dx Pe - aw(x.t)6k.(x)p(x)dx

Integrating both sides with respect to t over [u0,is] and permuting the order of
integration on the left-hand-side yields (permissible because Fubini's Theorem
applies to the absolutely integrand aw(X.t)

7U aw(x t) U r

0 f at O~k (x)p(x) dt d.T - f f -kW(Xt)k(x)p(x) dx d
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Using the definition of ck(t) on the right-hand-side of the last equation implies

UO

where C is an arbitrary constant.

Therefore Ck(t) = cke - a t . It remains to determine the constants Ck , but they

may be derived from the -boundary condition w(x,0) = 1 for 0 < x < r as
follows. Since p is continuous, w(x,0) - 1 for almost all p(dx), and 1 E L 2(p).

So

00

1 E Ck k(X) (8.1)
k-I

where

r

Ck = f Ok(x)p(x)dx (8.2)
0

Now Theorem 1.9 of [10] implies that the right-hand-side of (8.1) converges
pointwise to 1 on (O,r) . Therefore w(x,t) has the representation

W(x,t) - E Ck e-*'tk(x) (8.3)
k-

To prove the converse, suppose that w(x,t) is defined by (S.2) and (8.3) jointly.
Equations (3.7) and (8.2) imply that the coefficients Ck , k>1 are uniformly
bounded. Hence for t > 6 > 0 the series converges uniformly to a function
continuous on the product [0,r] X [f,oo) . The uniform convergence and
boundary conditions on the eigenfunctions imply the boundary conditions on xaw(x,t)

The integrability conditions on ) follow in similar fashion. The

boundary condition w(x.O) = 1 for x E (0.r) follows from Theorem 1.9 of [10]
and equation (8.1) The differential equation (1.2) may be derived from the
definition of derivatives as limits of divided differences, and the dominated
convergence theorem applied to series. QED.

It should be noted that the first passage time distribution satisfies the regularity
conditions of the theorem, and therefore must have representation (1.2).

8.2 Convergence Of The Finite Approximations To The Infinite Vector

It will now be shown that the solution vector to system (2.1) denoted by
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- {p") 1 < k < converges at rate n -2 component-wise to the infinite
vector p (P 9 k 1} where Pk = Ckok(x)

Theorem

IN)- Pk I = 0
n-

Proof: Define vkP* , bk" and ?1k as follows:

Vk Ai3jp 3 where 0O<k <n-1

00

Mk - = . where 0 < k <n -1 (8.4)
i-n +i

ll(* Pk Pk 0)

Observe that {VPr , 1 < k < n}I is the solution to (2.2) where {mn 1 < k < n}
has been replaced by {'5p) ,1 < k < n). In particular

= E t5*)g9....(Pi,p 2, J~- , Ak+1, A.) / I* (AG - Ak) (8.5)

For 1 < j <

* Uk~ , 14k+ij , ') , n -i-k

*Also equations (3.2), (3.6) and (3.7) together imply that lcn I =0(-L) ,thus (8.4)
and (3.6) imply

162I < Cn-2 i

<

I Ei gn-i(Oli.p2 7 Pk-I 1Pk+I, E k ~)~~
j-i j_1

SCn-2 j4 n--

Thus

n n-k-i

j-I n

-22-



Finally, the denominator of (8.5) may be written as

TI (A-'i - A)= 14n-k dn)

where

(nT) TI (I-Ik Y ( -- )

Now equation (3.6) and the Weierstrass Product Convergence test jointly imply
that

lrn d(n) - d > 0
n -too

Now it follows that iPk. - 0(-, ) as claimed.
n'

8.3 A Conjecture

It is interesting to note that Pk(x) is linearly proportional to the
eigenfunction 6 k(x). and therefore A4pk(X) =akpk-(x). This suggests that p ()
will approximately satisfy this relation. Observe that Ainkx)=-kx.
Thus

Ap?-(4(x) =M g -- 6102 .U- Pk J/ATI (IL3  ilk)

j k

Comparing this with (2.3) suggests that

8.4 Proposition

For 1 < x < 2

ilog(x) - x + 11 = (x-1)2 g(x)/2 .where lg(x)l < 1

Proof: The mean value theorem applied to log~x) at x=1 gives:
log(x) - log(1+x-1) =log(1) + (x-1) - (x-1)/12(1+a(x-1)-2 )

where 0 <aC < 1 . The prop now follows from x > 1 and a > 0.
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